
20 The Delphi Magazine Issue 48

Beating the System:
Deciphering The DCU, Part 3
by Dave Jewell

In last month’s column, I gave fur-
ther details of the DCU file format

and I also explained the operation
of the encoding scheme which
Borland use to compress numeric
data within the file. This time
round, we’ll take up the story
directly where we left off. Just to
refresh your memory, I’ve repro-
duced last month’s hexadecimal
dump of that very simple Pascal
unit we were examining, see Figure
1. Based on the information in the
last two instalments of this
column, you should now under-
stand the purpose of all the bytes
that are shown in red.

Dissecting USES
The next tag encountered has a
value of $64. It’s defined as shown
below:

const
Tag_Int_Use = $64;

Tag_Int_Use introduces a (poten-
tially complex, hierarchical)
record which essentially encapsu-
lates all the types, symbols, proce-
dures, etc, that are imported by a
unit and referenced within the
interface part of that unit. Thus,
for example, if you were to define a
variable, Fred, of type Integer
within the interface part of a unit,
then this would have a Tag_Int_Use
clause which (amongst other
things) would indicate that the
type Integer was being imported
from the System unit. You might not
expect that low-level built-in types
such as Integer, Boolean, etc have

22A2:0000 48 53 50 50 90 00 00 00-3D A5 C2 26 00 70 09 73 HSPP....=%B&.p.s
22A2:0010 71 75 69 74 2E 70 61 73-29 A3 C2 26 00 64 06 53 quit.pas)#B&.d.S
22A2:0020 79 73 74 65 6D 00 00 00-00 63 25 0A 53 6F 6D 65 ystem....c%.Some
22A2:0030 4E 75 6D 62 65 72 8A 33-7E 45 D9 02 00 53 AD 02 Number.3~EY..S-.
22A2:0040 28 05 53 71 75 69 74 80-00 00 00 00 00 02 04 63 (.Squit........c
22A2:0050 44 00 04 00 06 00 FB FF-03 0C 40 00 00 00 44 00 D.....{...@...D.
22A2:0060 08 00 06 0F 00 00 00 80-0F FF FF FF 7F 00 6C 02 l.
22A2:0070 C3 6D 04 00 03 06 02 04-06 90 02 16 00 91 02 02 Cm..............
22A2:0080 18 00 92 00 93 00 00 94-04 06 20 00 00 00 00 61a

➤ Figure 1

to be explicitly imported from the
System unit but, behind the scenes,
that’s exactly what happens.

In actual fact, our ‘dummy’ unit
doesn’t import anything from the
Systemunit, but it references System
nevertheless. Incidentally, if you
want to build a DCU file parser, you
should be aware that System isn’t
the only unit which can appear
with a ‘null’ Tag_Int_Use record. If
you add Dialogs (for example) to
the list of units in a uses clause, but
then neglect to reference anything
from the Dialogs unit, you’ll
probably end up with an empty
Tag_Int_Use record for the Dialogs
unit in the resulting DCU file.

If you think about it, things have
to work this way. Why? Because, in
the past, we’ve all built ‘faceless’
units which contain nothing in
their interface clause but which
nevertheless perform behind-
the-scenes magic simply through
the mere act of being included in a
program, the unit’s initialization
and finalization clauses being
executed at the appropriate time
to do the real work. Thus, you’ll
understand that even though noth-
ing appears to be referenced from
a unit, the presence of the unit in
the uses clause cannot be ignored
by the compiler.

If you examine the hex dump in
Figure 1, you’ll see that the tag byte
is followed by the name of the unit

(System) and then by a double-
word date/time stamp which pro-
vides versioning information as
described last month. Next comes
information on any referenced
identifiers present in the preced-
ing unit name, in this case none.
Finally, the record is terminated by
Tag_End_Record, another special
tag whose job is to mark the end of
the record and ‘pop’ us back up to
the previous level.

const
Tag_End_Record = $63;

This is where we really come up
against a limitation of our dummy
unit because it’s just giving us an
empty Tag_Int_Use record, we
need something meatier to look at!
If we were to define (for example)
an integer variable in the interface
part of our unit, then the
Tag_Int_Use record might look like
that shown in Listing 1.

This hex dump introduces you
to another new tag, Tag_Type_Use,
(value $66) which has a fairly obvi-
ous meaning, it specifies that a par-
ticular type is being referenced. In
looking at the record layout given
above, you need to appreciate that
the unit name can potentially be
followed by multiple Tag_Type_Use
sub-records, and that these can
then be followed by the name of
another unit which introduces
another bunch of sub-records con-
taining references to the second
unit name, and so on.

As explained above, the
Tag_Int_Use tag essentially groups

001D 64 ; tag = TAG_INT_USE
001E 06 53 79 73 74 65 6D ; references 'SYSTEM' unit
0025 00 00 00 00 ; date/time stamp
0029 66 ; tag = TAG_TYPE_USE
002A 07 49 6E 74 65 67 65 72 ; references 'Integer' type
0032 FA 6C 80 42 ; -- magic --
0036 63 ; tag = Tag_End_Record

➤ Listing 1

August 1999 The Delphi Magazine 21

together all the references to infor-
mation in other units that are being
used within the interface part of
the current unit. However, what
happens if you employ other types
and variables in the implementation
part of your unit? In order to cope
with this, Borland defined another
tag, Tag_Imp_Use.

const
Tag_Imp_Use = $65;

The format of this record is exactly
the same as for Tag_Int_Use. Once
again, it can potentially be made up
of a number of references to other
units, each of which is further
divided up into sub-records that
define the individual information.

At this point, you’re probably
pondering the meaning of the
‘magic’ field in the above hex
dump, which I’ve indicated is part
of the Tag_Type_Use record. I’ll
come to this later in this month’s
instalment. In addition to
Tag_Type_Use, there’s another very
similar record type, Tag_Sym_Use,
which is used to refer to symbols
defined in another module.

const
Tag_Sym_Use = $67;

Procedure Declaration
There are a host of other record
types that can occur within a DCU
file. Let’s look at some of the more
interesting ones. Firstly, there’s
the Tag_Proc tag which, as the
name suggests, identifies a

Bit Flag Meaning

$01 Value

$02 Assignable

$04 Constant

$08 Register

$10 Memory

$20 Address

$40 Exported

$80 Link or Qualifier

➤ Table 1

procedure defined within the DCU
file:
const
Tag_Proc = $28;

As with most tags, this is immedi-
ately followed by the name of the
procedure. Next comes an integer
(encoded as I described last
month) which represents a set of
bit flags. The defined bit flags are
shown in Table 1.

The meaning of most of these
fields will become clear as you
examine the innards of one or more
DCU files, comparing the source
code with what gets generated by
the compiler. For example, the
System unit contains a global vari-
able called hInstance which, as all
good Delphi programmers know, is
an instance handle for the cur-
rently running program. This
instance handle can be used to (for
example) retrieve resource data
from your application’s EXE file
using the somewhat baroque API
calls provided by Microsoft.

If you locate the ‘declaration’ for
hInstance, you’ll find that the Value
flag is set, as well as Assignable,
meaning that hInstance is an
assignable variable, although
you’d be ill-advised to change its
value! The Memory bit flag is set,
indicating that this variable
resides in memory rather than in a
register, and the Address and
Exported bit flags will also be set.
The Exported flag is perhaps the
most important, indicating that
this symbol is being ‘exported’
from this unit. Be careful not to
confuse this meaning of ‘exported’
with the export keyword which, in
Delphi, is used to export functions
from a dynamic link library.

Hang on a minute, Dave: I
thought you were talking about the
Tag_Proc record type? Is hInstance

a procedure or is it
a variable? Well, it’s
obviously the
latter, but the bit
flags described in
Table 1 tend to
crop up in many
different contexts
within a DCU file, as
we shall see: con-
stants, variables,

types and procedure all have the
same set of bit flags.

Following the flags field, the
Tag_Proc record then continues
with a four-byte magic number,
similar to the magic number used
by the Tag_Type_Use record. These
magic numbers are always
unencoded (ie a straight four-byte
quantity within the DCU file). As
we work through this month’s
code, you’ll see that pretty well
everything inside the DCU file also
has a magic number, provided that
the item is exported. And that’s the
key to what this magic number is.
I’m not totally sure how this works,
but I believe the magic number is
some sort of auto-generated value
(possibly derived from running a
hashing function on the identifier
name) which is used to identify
symbols internally. In other words,
rather than continually referring
to symbols by name, it’s more con-
venient to reference them through
a 32-bit identification number, the
magic value for Integer being
$42806CFA under Delphi version
2.0. You can think of these magic
numbers as the DCU equivalent of
a COM object’s GUID!

After the procedure’s magic
number come three encoded inte-
gers. I’m not sure what the first of
these represents, but the second
corresponds to the amount of gen-
erated code (in bytes) required for
the procedure, whereas the third
integer represents the function
result type, if any. If we’re dealing
with a procedure rather than a
function, this integer is still pres-
ent, but is mapped to what might
be defined as a ‘null’ type.

➤ Figure 2: Some DCUs contain
many dependencies on other
files. As you can see, this one
(taken from the popular
IPWorks package) includes at
least two other .INT files and
two other .PAS files.

22 The Delphi Magazine Issue 48

Following this is a list of
sub-records that define all the
parameters required by the proce-
dure, together with the various
local variables defined in the
procedure. The Tag_Proc record is
then terminated by a Tag_End_-
Record marker, which we’ve
already encountered. Thus, you
can see that sub-records may
appear in several different con-
texts (we’ve already seen them
inside Tag_Int_Use and Tag_Imp_-
Use) and a hierarchical record con-
structed in this way ends with a
Tag_End_Record byte.

Each parameter to a procedure
is introduced by means of a
Tag_Param record:

const
Tag_Param = $21;

The tag byte is followed, in the
usual way, by a string giving the
name of the parameter. There then
follows an encoded integer con-
taining the flag bits previously
described. Because parameters of
exported routines are not
themselves ‘exported’, there is no
accompanying magic number in a
Tag_Param record. However, you’ll
often find that the Register bit flag
is set for Tag_Param records be-
cause, as you’ll probably appreci-
ate, the default calling convention
in Delphi is to pass arguments via
registers. Let’s try and put this into
concrete terms. Suppose we define
a function Add, like this:

function Add(x, y: Integer):
Integer;

This will result in the generation of
two Tag_Param sub-records (within
the enclosing Tag_Proc record) that
looks like Listing 2.

The last two fields in each
Tag_Param record are used to define
the type and location of the param-
eter. The first of these, ParamType, is
used to encode the type of the
parameter in some way that I don’t
yet understand, probably using an
internal table of types that are con-
structed for each DCU file on a
per-unit basis. The meaning of the
second field, ParamLoc, is more
obvious and indicates either the
assigned register number (for
register-based parameters) or the
stack frame offset (for stack-based
parameters). The EAX register is
encoded as zero, the EDX register
as 1, and the ECX register as 2,
these are the order in which regis-
ters are assigned when using the
default calling conventions. Thus,
imagine a function declaration like:

function Add(x, y, z, p, q:
Integer): Integer;

In such a case, the x, y, z parame-
ters will all have the Register bit
flag set, and they’ll have ParamLoc
values of 0, 1, 2 respectively. How-
ever, the p, q parameters must be
pushed on the stack, and they will
therefore have the Memory bit flag
set instead. The p parameter will
have a ParamLoc value of 12, corre-
sponding to a stack frame offset of
12 bytes, whereas q will have a

stack frame offset of 8.
Thus, if you were to peek
at the generated code,
you’d see these parame-
ters being addressed as
[bp+12] and [bp+8].

Clearly, all of this infor-
mation has to be ‘up
front’ in the interface
part of a unit. If you have

a unit X, which calls routines in unit
Y, the code generator within the
compiler needs to know how to
call all the exported routines in
unit Y’s code during the compila-
tion of X. The code generator can’t
‘see’ the code corresponding to
the exported routines, but it can
see all the Tag_Proc records
belonging to unit Y, and the infor-
mation in these is used to generate
the calling code sequences.

Understanding
Standard Procedures
As you’ll no doubt appreciate, the
Delphi language contains many
built-in ‘intrinsic’ routines such as
Abs, Addr, Assigned, Chr, Ord and so
on. From the viewpoint of a pro-
grammer, these look just like ordi-
nary routines, and you might
imagine that they all result in a call
on the runtime library. Funnily
enough, none of the five routines I
mentioned map onto a call. Rather,
you can think of them as the equiv-
alent of C++ macros or inline func-
tions: no subroutine call is
involved. The correct term for
these routines is ‘standard proce-
dures’. Some standard procedures
map onto a runtime library call and
some don’t. Random, Assign, Insert,
Delete are all examples of standard
procedures that do involve a
library call.

In order to implement standard
procedures in Delphi Pascal,
Borland implemented each of
them as a pseudo-entry within the
System unit, and this is one of the
reasons why System plays such a
crucial role in Delphi. You might be
surprised to know that, in Delphi 2,
there are no less than ninety-one of
these standard procedure entries
in SYSTEM.DCU! You can see some
of them in Figure 3.

Each standard procedure defini-
tion is introduced by a special tag
called Tag_StdProc:

Param: x
ParamFlags: $0000000B[value, assignable, reg]
ParamType: 1
ParamLoc 0
Param: y
ParamFlags: $0000000B[value, assignable, reg]
ParamType: 1
ParamLoc 1

➤ Listing 2

➤ Figure 3: Here's a view of
some of the standard
procedure definitions inside
SYSTEM.PAS. Many of these
aren't actually procedures at
all, in the real sense of the
word, but this magic is needed
in order to keep the front-end
parser happy!

24 The Delphi Magazine Issue 48

const
Tag_StdProc = $29;

As far as I know, only the SYSTEM
unit contains these special entries
and I suspect that there’s no way of
getting the standard Delphi com-
piler to generate them. I seem to
remember reading somewhere
that it was necessary to hand-
assemble the SYSTEM.DCU file for
each new release of the develop-
ment system, and I wouldn’t be sur-
prised if this wasn’t still the case.

Internally, the structure of a
Tag_StdProc record is very simple;
the name of the standard proce-
dure follows the tag byte, and this
in turn is followed by a standard
set of flags as previously
described. Next comes a proce-
dure number by which the stan-
dard procedure is identified, and
that’s it! Within the compiler,
whenever a standard procedure is
referenced, the compiler essen-
tially references this internal pro-
cedure name, using it to decide
how to handle a particular stan-
dard procedure. Some standard
procedures, notably Read, Readln,
Write and Writeln require a sub-
stantial amount of extra code to
parse, and may require calls to sev-
eral runtime library routines.

Updating Anthem
Time to put all of this together!
Since last month’s article, I’ve
made a number of changes to
Anthem, the DCU scanning and
browsing utility that we’ve been
playing with over the last couple of
months. In particular, I hived off all
the low-level DCU ‘sniffing’ code
into a separate form, TReportForm,
which uses a TMemo component to
provide a scrolling view of an

arbitrarily large chunk of
data. You can see a typical
view in Figure 2.

TReportForm is contained
in a unit called REPORT.PAS,
the source code to which is
shown in Listing 3.
REPORT.PAS in turn uses a
small file, DCUDEFS.PAS, in
which I’ve placed all the tag
values that have been discussed so
far: see Listing 4. If you look care-
fully, you’ll see that Anthem uses a
few tags that I haven’t discussed so
far, one of which is Tag_DLL_Import.
This tag is used to describe sym-
bols that have been imported from
a DLL. For obvious reasons, you’ll
most often find this tag used when
peeking inside the WINDOWS.DCU
file. In fact, if you use Anthem to
load up the Delphi 2 version of
WINDOWS.DCU, you’ll probably
think the program has crashed: it
hasn’t, but it will take it several sec-
onds to digest the huge number of
Windows API calls that are pro-
vided through the Tag_DLL_Import
record, the format of which is
identical to Tag_Int_Use and
Tag_Imp_Use. When examining DLL
declarations stored in a
Tag_DLL_Import record, you’ll also
notice that the corresponding
‘magic’ field is always zero,
because of course this is only
applicable when resolving
symbols between different DCU
files.

The REPORT.PAS code is based
around a few simple routines,
PutStr, PutField, etc, which add
lines of text to the TMemo
component. I’ve also added a Save
As... button so that you can
optionally write a DCU information
dump out to a text file. The real
work is done inside the FormShow

method which works its way
through the DCU file until an unre-
cognised tag is encountered, at
which point the program bottles
out just like last month’s code.
However, I’ve enhanced things
slightly by printing out the hexa-
decimal file offset at which the
unknown tag was found, thus
making it easier to (for example)
fire up a hex file editor and see the
offending data for yourself.

Compatibility Issues:
Delphi 3, 4... And 5!
If you've been following through
this series, and trying out Anthem
with various DCU files, you'll know
that previous versions of the pro-
gram weren't terribly happy with
Delphi 3 and 4 files. As I stressed
last time round, this doesn't mean
that the format of Delphi 3 and 4
DCUs is fundamentally different,
because it isn't. My understanding
was that the problem was caused
by unrecognised tags right at the
beginning of the DCU file, immedi-
ately after the 12-byte header.

In fact, I was wrong. Another
keen DCU investigator (who
wishes to remain anonymous!)
told me that Delphi 3 and 4 DCUs
store a 32-bit quantity at location
$0C in the DCU, effectively adding 4
more bytes to the fixed 12-byte
header we've discussed in previ-
ous months. Initially, I thought he

➤ Figure 4: Despite our inability
to recognise all tags, Anthem
can still do useful work. If you
want to create specialised
property editors but use
predefined help contexts in
the IDE help file, a peek inside
LibHelp.DCU will show you
the magic numbers required.

➤ Figure 5: If you want
to do any serious DCU
investigation of your
own, you'll need a
decent hexadecimal
editor such as Hex
Workshop, shown here.
By now, you should be
able to recognise all the
various tags and record
types in this DCU file! ➤ Facing page: Listing 3

August 1999 The Delphi Magazine 25

unit Report;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, DCUDefs;

type
TReportForm = class(TForm)
OKButton: TButton;
Info: TMemo;
SaveDialog1: TSaveDialog;
Button1: TButton;
procedure FormShow(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
p: PChar;
Buff: PChar;
Unknown: Boolean;
Version: TDCUVersion;
procedure PutStrUnderlined (const S: String);
procedure PutStr (const S: String);
procedure PutField (const Name, Val: String);
function DCUReadString: String;
function DCUDecodeNum: Integer;
procedure DCUUnknown (Tag, Offset: Integer);
procedure DCUDumpDFKRecord (const Typ: String);
procedure DCUTypeSymUse (const Typ: String);
procedure DCUDumpUsesRecord (const Typ: String);
procedure DCUProcDeclaration;
procedure DCUStdProcDeclaration;
function DCUGetSymFlags (Flags: Integer): String;
procedure DCUParamDeclaration;
procedure DCUVariableDeclaration;
procedure DCUConstDeclaration;
procedure DCUTypeDeclaration;
procedure DCUVMTDeclaration;
procedure DCUTypedConstantDeclaration;
procedure DCUThreadVarDeclaration;
procedure DCUPutMagic (Flags: Integer);
procedure DCUIncrementLevel;
procedure DCUDecrementLevel;
procedure DCUUnitFlags;

public
end;

implementation
{$R *.DFM}
procedure TReportForm.PutStr (const S: String);
begin
Info.Lines.Add (S);

end;
procedure TReportForm.PutStrUnderlined (const S: String);
var
Str: String;

begin
PutStr (S);
Str := '';
while Length (Str) < Length (S) do
Str := Str + '=';

PutStr (Str);
PutStr ('');

end;
procedure TReportForm.PutField (const Name, Val: String);
const
Offset = 20;

var
S: String;

begin
S := Name;
while Length (S) < Offset do
S := S + ' ';

PutStr (S + Val);
end;
procedure TReportForm.DCUUnknown (Tag, Offset: Integer);
begin
Unknown := True;
PutField('Unknown tag:', Format ('$%x at offset $%x',
[Tag, Offset]));

end;
function TReportForm.DCUReadString: String;
var
Len: Byte;

begin
Result := '';
Len := Ord (p^); Inc (p);
while Len <> 0 do begin
Result := Result + p^;
Inc (p); Dec (Len);

end;
end;
function TReportForm.DCUDecodeNum: Integer;
const
SizeNum: array [0..15] of Byte = (1, 2, 1, 3, 1, 2, 1, 4,
1, 2, 1, 3, 1, 2, 1, 5);

ShiftNum: array [0..15] of Byte = (25, 18, 25, 11, 25, 18,
25, 4, 25, 18, 25, 11, 25, 18, 25, 0);

var
Idx: Byte;

begin
Idx := Ord (p^) and 15;
Inc (p, SizeNum [Idx]);
Result := PLongInt (p - 4)^ shr ShiftNum [Idx];

end;
function TReportForm.DCUGetSymFlags (Flags: Integer):
String;

begin
Result := '[';
if (Flags and 1) <> 0 then
Result := Result + 'value, ';

if (Flags and 2) <> 0 then
Result := Result + 'assignable, ';

if (Flags and 4) <> 0 then
Result := Result + 'constant, ';

if (Flags and 8) <> 0 then
Result := Result + 'reg, ';

if (Flags and 16) <> 0 then
Result := Result + 'mem, ';

if (Flags and 32) <> 0 then
Result := Result + 'adr, ';

if (Flags and 64) <> 0 then
Result := Result + 'exported, ';

if (Flags and 128) <> 0 then
Result := Result + 'link or qual, ';

if Length (Result) > 1 then
SetLength (Result, Length(Result) - 2);

Result := Result + ']';
end;
procedure TReportForm.DCUParamDeclaration;
var
Flags: Integer;

begin
PutField ('Param:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('ParamFlags:', '$' + IntToHex (Flags, 8) +
DCUGetSymFlags (Flags));

PutField ('ParamType:', IntToStr (DCUDecodeNum));
PutField ('ParamLoc', IntToStr (DCUDecodeNum));
PutStr ('');

end;
procedure TReportForm.DCUTypedConstantDeclaration;
var
Flags: Integer;

begin
PutField ('TypedConstant:', DCUReadString);
Flags := DCUDecodeNum;
PutField('ParamFlags:', '$' + IntToHex(Flags, 8) +
DCUGetSymFlags(Flags));

DCUPutMagic (Flags);
PutField('typedconst1:', '$'+IntToHex(DCUDecodeNum,8));
PutField('typedconst2:', '$'+IntToHex(DCUDecodeNum,8));
PutStr ('');

end;
procedure TReportForm.DCUConstDeclaration;
var
Flags: Integer;

begin
PutField ('Constant:', DCUReadString);
Flags := DCUDecodeNum;
PutField('ConstFlags:', '$' + IntToHex(Flags, 8) +
DCUGetSymFlags(Flags));

PutField('Const1:', '$' + IntToHex(PLongInt (p)^, 8));
Inc (p, 4);
PutField ('Const2:', '$' + IntToHex (DCUDecodeNum, 8));
PutField ('Const3:', '$' + IntToHex (DCUDecodeNum, 8));
PutField ('Value:', '$' + IntToHex (DCUDecodeNum, 8));
PutStr ('');

end;
procedure TReportForm.DCUIncrementLevel;
begin
PutStr ('Increment Level:');
PutStr ('');

end;
procedure TReportForm.DCUDecrementLevel;
begin
PutStr ('Decrement Level:');
PutStr ('');

end;
procedure TReportForm.DCUUnitFlags;
begin
PutField ('Unit Flags:', 'Flags = $' +
IntToHex(DCUDecodeNum, 8));

if Version in [D4, D5, B3] then
PutField ('Unit Flags:', 'Priority = $' +
IntToHex (DCUDecodeNum, 8));

PutStr ('');
end;
procedure TReportForm.DCUPutMagic (Flags: Integer);
begin
// Magic is only present for exported symbols.
if (Flags and 64) <> 0 then begin
PutField ('Magic:', '$' + IntToHex (PLongInt (p)^, 8));
Inc (p, 4);

end;
end;
procedure TReportForm.DCUThreadVarDeclaration;
var
Flags: Integer;

begin
PutField ('ThreadVar:', DCUReadString);
Flags := DCUDecodeNum;

{ *** CONTINUED ON NEXT PAGE *** }

26 The Delphi Magazine Issue 48

{ *** CONTINUED FROM PREVIOUS PAGE *** }
PutField('ThreadVarFlags:', '$' + IntToHex(Flags, 8) +
DCUGetSymFlags(Flags));

DCUPutMagic (Flags);
PutField('threadvar1:', '$'+IntToHex(DCUDecodeNum,8));
PutField('threadvar2:', '$'+IntToHex(DCUDecodeNum,8));
PutStr ('');

end;
procedure TReportForm.DCUVariableDeclaration;
var Flags: Integer;
begin
PutField ('Variable:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('VarFlags:', '$' + IntToHex (Flags, 8) +

DCUGetSymFlags (Flags));
DCUPutMagic (Flags);
PutField ('VarType:', '$' + IntToHex (DCUDecodeNum, 8));
PutField ('VarLoc:', '$' + IntToHex (DCUDecodeNum, 8));
PutStr ('');

end;
procedure TReportForm.DCUTypeDeclaration;
var
Flags: Integer;

begin
PutField ('Type:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('TypeFlags:', '$' + IntToHex (Flags, 8) +
DCUGetSymFlags (Flags));

DCUPutMagic (Flags);
PutField ('type1:', '$' + IntToHex (DCUDecodeNum, 8));
PutStr ('');

end;
procedure TReportForm.DCUVMTDeclaration;
var Flags: Integer;
begin
PutField ('VMT:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('VMTFlags:', '$' + IntToHex (Flags, 8) +
DCUGetSymFlags (Flags));

DCUPutMagic (Flags);
PutField ('vmt1:', '$' + IntToHex (DCUDecodeNum, 8));
PutField ('vmt2:', '$' + IntToHex (DCUDecodeNum, 8));
PutStr ('');

end;
procedure TReportForm.DCUStdProcDeclaration;
var Flags: Integer;
begin
PutField ('StdProc:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('StdProcFlags:', '$' + IntToHex (Flags, 8) +
DCUGetSymFlags (Flags));

PutField('StdProcNum:', '$'+IntToHex(DCUDecodeNum,8));
PutStr ('');

end;
procedure TReportForm.DCUProcDeclaration;
var Flags: Integer;
begin
PutField ('Procedure:', DCUReadString);
Flags := DCUDecodeNum;
PutField ('Proc Flags:', '$' + IntToHex (Flags, 8) +
DCUGetSymFlags (Flags));

DCUPutMagic (Flags);
PutField ('proc1:', IntToStr (DCUDecodeNum));
PutField('Code Size:', IntToStr(DCUDecodeNum)+' bytes');
PutField ('ResultType:', IntToStr (DCUDecodeNum));
PutStr ('');
while not Unknown do begin
Tag := Ord (p^); Inc (p);
case Tag of
Tag_End_Record : break; // All done!
Tag_Param : DCUParamDeclaration;
Tag_Variable : DCUVariableDeclaration;

else
DCUUnknown (Tag, p - Buff - 1);

end;
end;

end;
procedure TReportForm.DCUDumpUsesRecord (const Typ: String);
var
S, UnitName: String;
modTime: LongInt;

begin
PutStrUnderlined (Format ('USES (%s)', [Typ]));
UnitName := DCUReadString;
PutField ('UnitName:', UnitName);
modtime := PLongInt (p)^; Inc (p, 4);
if modtime = 0 then
S := '00000000'

else
try
S := FormatDateTime('dddd, mmmm d, yyyy, hh:mm AM/PM',
FileDateToDateTime (modtime));

except
{ Eat exceptions if modtime is invalid } ;

end;
PutField('Modification Time:', S);
while not Unknown do begin
Tag := Ord (p^); Inc (p);
case Tag of
Tag_End_Record : break; // All done!
Tag_Type_Use : DCUTypeSymUse ('Used Type:');

Tag_Sym_Use : DCUTypeSymUse ('Used Symbol:');
else
DCUUnknown (Tag, p - Buff - 1);

end;
end;
PutStr ('');

end;
procedure TReportForm.DCUTypeSymUse (const Typ: String);
var TypName: String;
begin
TypName := DCUReadString;
PutField(Typ, TypName+' (Magic: $'+
IntToHex(PLongInt(p)^,8)+')');

Inc(p, 4);
end;
procedure TReportForm.DCUDumpDFKRecord (const Typ: String);
var
modtime: LongInt;

begin
PutField (Typ + ':', DCUReadString);
try
modtime := PLongInt (p)^; Inc (p, 4);
PutField ('Modification Time:', FormatDateTime(
'dddd, mmmm d, yyyy, hh:mm AM/PM',
FileDateToDateTime(modtime)));

except
{ Eat exceptions if modtime is invalid } ;

end;
PutField ('File Index:', IntToStr (DCUDecodeNum));
PutStr ('');

end;
procedure TReportForm.FormShow(Sender: TObject);
var
fs: TFileStream;

begin
fs := TFileStream.Create (Caption, fmOpenRead);
try
PutStrUnderlined(Format('Information on %s',[Caption]));
Caption := 'DCU Report information';
GetMem (Buff, fs.Size);
fs.Read (Buff^, fs.Size);

finally
fs.Free;

end;
if Buff <> Nil then try
p := Buff;
// Get version number in an easily usable form
case PLongInt (p)^ of
D2Magic : Version := D2;
D3Magic : Version := D3;
D4Magic : Version := D4;
D5Magic : Version := D5;
B3Magic : Version := B3;

end;
// point at first byte of interest in DCU image
Inc (p, 12);
// If this isn't a Delphi 2 file, then there's an
// unknown 32-bit field to skip..
if Version <> D2 then
Inc (p, 4);

// Now skip the ever-empty string field
DCUReadString;
while not Unknown do begin
Tag := Ord (p^); Inc (p);
case Tag of
Tag_End : break; // All done!
Tag_Int_Use : DCUDumpUsesRecord('Interface');
Tag_Imp_Use : DCUDumpUsesRecord(

'Implementation');
Tag_DLL_Import : DCUDumpUsesRecord('DLL Import');
Tag_DFK_Source : DCUDumpDFKRecord('Source File');
Tag_DFK_Object : DCUDumpDFKRecord('Object File');
Tag_DFK_Resource : DCUDumpDFKRecord(

'Resource File');
Tag_DFK_TheAdr : DCUDumpDFKRecord(

'Tag_DFK_TheAdr ????');
Tag_Proc : DCUProcDeclaration;
Tag_StdProc : DCUStdProcDeclaration;
Tag_Const : DCUConstDeclaration;
Tag_VMT : DCUVMTDeclaration;
Tag_Type : DCUTypeDeclaration;
Tag_StructConst : DCUTypedConstantDeclaration;
Tag_Variable : DCUVariableDeclaration;
Tag_ThreadVar : DCUThreadVarDeclaration;
Tag_Unit_Flags : DCUUnitFlags;
Tag_Inc_Level : DCUIncrementLevel;
Tag_Dec_Level : DCUDecrementLevel;

else
DCUUnknown (Tag, p - Buff - 1);

end;
end;

finally
FreeMem (Buff);

end;
end;
procedure TReportForm.Button1Click(Sender: TObject);
begin
if SaveDialog1.Execute then
Info.Lines.SaveToFile(SaveDialog1.FileName);

end;
end.

August 1999 The Delphi Magazine 27

was in error but, on rechecking the
code in DCC32.EXE, he turned out to
be correct. Moreover, the empty
string at location $0C, which I'd sup-
posed only to be present in Delphi
2 DCU files is always there, but it
gets shifted down to location $10 in
files after version 2.0 because of
the preceding 32-bit field I've just
alluded to.

To summarise then: all 32-bit
DCU files begin with a magic signa-
ture, file length and 32-bit
timestamp. For versions of Delphi
after 2.0, this is then followed by a
mystery 32-bit number, whose sig-
nificance isn't yet understood. All
versions then have an empty
string, which equates to a zero
byte, and this is then followed by
the tags proper.

While on the subject of minor
incompatibilities, you'll notice that
one of the tags handled by the
updated Anthem program is called
Tag_Unit_Flags. This record didn't
exist at all in Delphi 2, but is used in
Delphi 3 onwards. The format of
the record, which consists of
either one or two encoded inte-
gers, is version-sensitive, because
the second, priority, field didn't
exist before Delphi 4. The code in
Listing 3 has been modified to
reflect these minor tweaks, and it
now returns useful data from
Delphi 2, 3 and 4 DCU files. How-
ever, do bear in mind that our
investigation of possible tag types
is incomplete and that sooner or
later the program will discover an
unrecognised tag as it works its
way through a DCU.

Did I Say 5?
And now for the question you've
been dying to ask: yes, Anthem
works fine with Delphi 5 as well.

All that's necessary is to get the
program to recognise the magic
signature for Delphi 5 DCU files
($F21F148B, in case you were won-
dering!) and away we go... More
than anything else, this really
amounts to an eloquent demon-
stration of the fact that the DCU
format really hasn't changed much
from one version of Delphi to the
next. Yes, I accept that later ver-
sions contain newer tags for imple-
menting stuff such as default

parameters, function overloading,
and so on, but surely it wouldn't be
too difficult for Borland to write a
utility capable of ‘upgrading’ older
DCUs to a newer format? Come on
guys: we know you can do it!

Of course, the aim of Beating The
System (and indeed, the whole of
The Delphi Magazine) is to provide
you with practical, real-world code
and techniques that you can imme-
diately put to good use in your own
applications. This mini-series on
the DCU file format doesn't quite
come into this category but, then
again, a new-born baby is rarely of
much practical use!

My hope, as I said last time
round, is that other folks will build
upon these articles and that even-
tually, we'll have a complete under-
standing of what's going on inside
the mysterious DCU. I'm personally
committed to an ongoing investiga-
tion of the DCU file until such time
as Borland themselves release the
necessary information and,
accordingly, we'll be returning to
the Anthem program on an occa-
sional basis as more is discovered.

➤ Listing 4

unit DCUDefs;
interface
const
// Magic signatures
D2Magic = $50505348;
D3Magic = $44518641;
D4Magic = $4768A6D8;
D5Magic = $F21F148B;
B3Magic = $475896C8;
// DCU record tags
Tag_Variable = $20; // variable definition
Tag_Param = $21; // parameter definition
Tag_VarPar = $22; // VAR parameter definition
Tag_ResPtr = $23;
Tag_AbsVar = $24;
Tag_Const = $25; // constant definition
Tag_VMT = $26; // VMT definition
Tag_StructConst = $27; // Typed constant definition
Tag_Proc = $28; // procedure definition
Tag_StdProc = $29; // stdproc definition
Tag_Type = $2A; // type definition
Tag_Label = $2B; // label definition
Tag_Field = $2C;
Tag_Method = $2D;
Tag_Constructor = $2E;
Tag_Destructor = $2F;
Tag_Property = $30;
Tag_ThreadVar = $31; // thread variable definition
Tag_ResString = $32; // resource string definition
Tag_ExtProc = $33;
Tag_End = $61; // end of file marker
Tag_End_Record = $63; // end of compound record
Tag_Int_Use = $64; // external definitions used by INTERFACE
Tag_Imp_Use = $65; // external definitions used by IMPLEMENTATION
Tag_Type_Use = $66; // reference to external type
Tag_Sym_Use = $67; // reference to external symbol
Tag_DLL_Import = $68; // reference to DLL-imports
Tag_Inc_Level = $6A; // increment level
Tag_Dec_Level = $6B; // decrement level
Tag_DFK_Source = $70; // required Source file (.PAS / .INC)
Tag_DFK_Object = $71; // required Source file (.OBJ)
Tag_DFK_Resource = $72; // required Source file (.RES)
Tag_DFK_TheAdr = $73; // required Source file (.???)
Tag_Unit_Flags = $96; // unit flags information

type
TDCUVersion = (B3, D2, D3, D4, D5);

implementation
end.

In the meantime, if you have any
DCU-related insights of your own,
you can contact me at the email
address given below. Obviously,
full credit will be given for all dis-
coveries received.

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

	Dissecting USES
	Procedure value! The Memory bit flag is set,
	Understanding Standard Procedures
	Updating Anthem
	Compatibility Issues: Delphi 3, 4... And 5!
	Did I Say 5?

